Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; : 101544, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38697102

RESUMO

Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").

2.
Front Pharmacol ; 14: 1293578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149052

RESUMO

Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.

3.
Eur Respir J ; 62(4)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696564

RESUMO

BACKGROUND: Around 20% of people with cystic fibrosis (pwCF) do not have access to the triple combination elexacaftor/tezacaftor/ivacaftor (ETI) in Europe because they do not carry the F508del allele on the CF transmembrane conductance regulator (CFTR) gene. Considering that pwCF carrying rare variants may benefit from ETI, including variants already validated by the US Food and Drug Administration (FDA), a compassionate use programme was launched in France. PwCF were invited to undergo a nasal brushing to investigate whether the pharmacological rescue of CFTR activity by ETI in human nasal epithelial cell (HNEC) cultures was predictive of the clinical response. METHODS: CFTR activity correction was studied by short-circuit current in HNEC cultures at basal state (dimethyl sulfoxide (DMSO)) and after ETI incubation and expressed as percentage of normal (wild-type (WT)) CFTR activity after sequential addition of forskolin and Inh-172 (ΔI ETI/DMSO%WT). RESULTS: 11 pwCF carried variants eligible for ETI according to the FDA label and 28 carried variants not listed by the FDA. ETI significantly increased CFTR activity of FDA-approved CFTR variants (I601F, G85E, S492F, M1101K, R347P, R74W;V201M;D1270N and H1085R). We point out ETI correction of non-FDA-approved variants, including N1303K, R334W, R1066C, Q552P and terminal splicing variants (4374+1G>A and 4096-3C>G). ΔI ETI/DMSO%WT was significantly correlated to change in percentage predicted forced expiratory volume in 1 s and sweat chloride concentration (p<0.0001 for both). G85E, R74W;V201M;D1270N, Q552P and M1101K were rescued more efficiently by other CFTR modulator combinations than ETI. CONCLUSIONS: Primary nasal epithelial cells hold promise for expanding the prescription of CFTR modulators in pwCF carrying rare mutants. Additional variants should be discussed for ETI indication.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Dimetil Sulfóxido , Mutação
4.
J Cyst Fibros ; 22(6): 1070-1079, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37422433

RESUMO

RATIONALE: Limited information is available on the clinical status of people with Cystic Fibrosis (pwCF) carrying 2 nonsense mutations (PTC/PTC). The main objective of this study was to compare disease severity between pwCF PTC/PTC, compound heterozygous for F508del and PTC (F508del/PTC) and homozygous for F508del (F508del+/+). METHODS: Based on the European CF Society Patient Registry clinical data of pwCF living in high and middle income European and neighboring countries, PTC/PTC (n = 657) were compared with F508del+/+ (n = 21,317) and F508del/PTC(n = 4254).CFTR mRNA and protein activity levels were assessed in primary human nasal epithelial (HNE) cells sampled from 22 PTC/PTC pwCF. MAIN RESULTS: As compared to F508del+/+ pwCF; both PTC/PTC and F508del/PTC pwCF exhibited a significantly faster rate of decline in Forced Expiratory Volume in 1 s (FEV1) from 7 years (-1.33 for F508del +/+, -1.59 for F508del/PTC; -1.65 for PTC/PTC, p < 0.001) until respectively 30 years (-1.05 for F508del +/+, -1.23 for PTC/PTC, p = 0.048) and 27 years (-1.12 for F508del +/+, -1.26 for F508del/PTC, p = 0.034). This resulted in lower FEV1 values in adulthood. Mortality of pediatric pwCF with one or two PTC alleles was significantly higher than their F508del homozygous pairs. Infection with Pseudomonas aeruginosa was more frequent in PTC/PTC versus F508del+/+ and F508del/PTC pwCF. CFTR activity in PTC/PTC pwCF's HNE cells ranged between 0% to 3% of the wild-type level. CONCLUSIONS: Nonsense mutations decrease the survival and accelerate the course of respiratory disease in children and adolescents with Cystic Fibrosis.


Assuntos
Fibrose Cística , Adolescente , Humanos , Criança , Fibrose Cística/genética , Fibrose Cística/metabolismo , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Volume Expiratório Forçado , RNA Mensageiro , Mutação
6.
STAR Protoc ; 3(2): 101419, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35664255

RESUMO

Here, we present a standardized protocol for isolation, maintenance, and polarization of the respiratory epithelial primary cells from patient samples acquired from nasal brushing, polyp specimens, or lung explants. This protocol generates a clearly defined polarized layer of epithelial cells on filters, with a good number of ciliated cells and a thin layer of mucus. We detail the steps for samples prepared from patients with cystic fibrosis as well as from subjects without cystic fibrosis.


Assuntos
Fibrose Cística , Pólipos , Fibrose Cística/patologia , Células Epiteliais/patologia , Humanos , Pulmão , Muco , Mucosa Nasal/patologia , Pólipos/patologia
7.
J Vis Exp ; (182)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35532277

RESUMO

Human nasal epithelial (HNE) cells are easy to collect by simple, non-invasive nasal brushing. Patient-derived primary HNE cells can be amplified and differentiated into a pseudo-stratified epithelium in air-liquid interface conditions to quantify cyclic AMP-mediated Chloride (Cl-) transport as an index of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function. If critical steps such as quality of nasal brushing and cell density upon cryopreservation are performed efficiently, HNE cells can be successfully biobanked. Moreover, short-circuit current studies demonstrate that freeze-thawing does not significantly modify HNE cells' electrophysiological properties and response to CFTR modulators. In the culture conditions used in this study, when less than 2 x 106 cells are frozen per cryovial, the failure rate is very high. We recommend freezing at least 3 x 106 cells per cryovial. We show that dual therapies combining a CFTR corrector with a CFTR potentiator have a comparable correction efficacy for CFTR activity in F508del-homozygous HNE cells. Triple therapy VX-445 + VX-661 + VX-770 significantly increased correction of CFTR activity compared to dual therapy VX-809 + VX-770. The measure of CFTR activity in HNE cells is a promising pre-clinical biomarker useful to guide CFTR modulator therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Bancos de Espécimes Biológicos , Contagem de Células , Cloretos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Humanos , Mutação , Medicina de Precisão
8.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806154

RESUMO

Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.


Assuntos
Bicarbonatos/química , Anidrases Carbônicas/metabolismo , Epitélio/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antiporters/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Coelhos , Transportadores de Sulfato/metabolismo , Traqueia/metabolismo
9.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33926975

RESUMO

INTRODUCTION: A reduction in pulmonary artery relaxation is a key event in the pathogenesis of pulmonary arterial hypertension (PAH). Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithelial cells plays a central role in cystic fibrosis; CFTR is also expressed in pulmonary arteries and has been shown to control endothelium-independent relaxation. AIM AND OBJECTIVES: We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models. METHODS AND RESULTS: Reverse-transcriptase quantitative PCR, confocal imaging and electron microscopy showed that CFTR expression was reduced in pulmonary arteries from patients with idiopathic PAH (iPAH) and in rats with monocrotaline-induced pulmonary hypertension (PH). Moreover, using myography on human, pig and rat pulmonary arteries, we demonstrated that CFTR activation induces pulmonary artery relaxation. CFTR-mediated pulmonary artery relaxation was reduced in pulmonary arteries from iPAH patients and rats with monocrotaline- or chronic hypoxia-induced PH. Long-term in vivo CFTR inhibition in rats significantly increased right ventricular systolic pressure, which was related to exaggerated pulmonary vascular cell proliferation in situ and vessel neomuscularisation. Pathologic assessment of lungs from patients with severe cystic fibrosis (F508del-CFTR) revealed severe pulmonary artery remodelling with intimal fibrosis and medial hypertrophy. Lungs from homozygous F508delCftr rats exhibited pulmonary vessel neomuscularisation. The elevations in right ventricular systolic pressure and end diastolic pressure in monocrotaline-exposed rats with chronic CFTR inhibition were more prominent than those in vehicle-exposed rats. CONCLUSIONS: CFTR expression is strongly decreased in pulmonary artery smooth muscle and endothelial cells in human and animal models of PH. CFTR inhibition increases vascular cell proliferation and strongly reduces pulmonary artery relaxation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Hipertensão Arterial Pulmonar , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Endoteliais , Humanos , Monocrotalina , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Ratos , Suínos
10.
Br J Haematol ; 192(5): 909-921, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33528045

RESUMO

Lowe syndrome (LS) is an oculocerebrorenal syndrome of Lowe (OCRL1) genetic disorder resulting in a defect of the OCRL protein, a phosphatidylinositol-4,5-bisphosphate 5-phosphatase containing various domains including a Rho GTPase-activating protein (RhoGAP) homology domain catalytically inactive. We previously reported surgery-associated bleeding in patients with LS, suggestive of platelet dysfunction, accompanied with a mild thrombocytopenia in several patients. To decipher the role of OCRL in platelet functions and in megakaryocyte (MK) maturation, we conducted a case-control study on 15 patients with LS (NCT01314560). While all had a drastically reduced expression of OCRL, this deficiency did not affect platelet aggregability, but resulted in delayed thrombus formation on collagen under flow conditions, defective platelet spreading on fibrinogen and impaired clot retraction. We evidenced alterations of the myosin light chain phosphorylation (P-MLC), with defective Rac1 activity and, inversely, elevated active RhoA. Altered cytoskeleton dynamics was also observed in cultured patient MKs showing deficient proplatelet extension with increased P-MLC that was confirmed using control MKs transfected with OCRL-specific small interfering(si)RNA (siOCRL). Patients with LS also had an increased proportion of circulating barbell-shaped proplatelets. Our present study establishes that a deficiency of the OCRL protein results in a defective actomyosin cytoskeleton reorganisation in both MKs and platelets, altering both thrombopoiesis and some platelet responses to activation necessary to ensure haemostasis.


Assuntos
Plaquetas/citologia , Megacariócitos/citologia , Síndrome Oculocerebrorrenal/genética , Monoéster Fosfórico Hidrolases/fisiologia , Trombopoese/fisiologia , Actomiosina/análise , Adolescente , Adulto , Anemia/etiologia , Coagulação Sanguínea , Plaquetas/ultraestrutura , Estudos de Casos e Controles , Forma Celular , Criança , Colágeno , Citoesqueleto/ultraestrutura , Feminino , Inativação Gênica , Humanos , Masculino , Megacariócitos/ultraestrutura , Pessoa de Meia-Idade , Mutação , Cadeias Leves de Miosina/metabolismo , Síndrome Oculocerebrorrenal/sangue , Síndrome Oculocerebrorrenal/patologia , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , Transdução de Sinais , Trombocitopenia/etiologia , Adulto Jovem
12.
Sci Rep ; 9(1): 6516, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019198

RESUMO

Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that S. aureus clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after S. aureus apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in S. aureus clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased S. aureus proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset of S. aureus infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.


Assuntos
Brônquios/citologia , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bicarbonatos/química , Bicarbonatos/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Recém-Nascido , Mucosa Respiratória/química , Mucosa Respiratória/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Transportadores de Sulfato/metabolismo , Catelicidinas
13.
Animal Model Exp Med ; 2(4): 297-311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31942562

RESUMO

BACKGROUND: Genetically engineered animals are essential for gaining a proper understanding of the disease mechanisms of cystic fibrosis (CF). The rat is a relevant laboratory model for CF because of its zootechnical capacity, size, and airway characteristics, including the presence of submucosal glands. METHODS: We describe the generation of a CF rat model (F508del) homozygous for the p.Phe508del mutation in the transmembrane conductance regulator (Cftr) gene. This model was compared to new Cftr -/- rats (CFTR KO). Target organs in CF were examined by histological staining of tissue sections and tooth enamel was quantified by micro-computed tomography. The activity of CFTR was evaluated by nasal potential difference (NPD) and short-circuit current measurements. The effect of VX-809 and VX-770 was analyzed on nasal epithelial primary cell cultures from F508del rats. RESULTS: Both newborn F508del and Knock out (KO) animals developed intestinal obstruction that could be partly compensated by special diet combined with an osmotic laxative. The two rat models exhibited CF phenotypic anomalies such as vas deferens agenesis and tooth enamel defects. Histology of the intestine, pancreas, liver, and lungs was normal. Absence of CFTR function in KO rats was confirmed ex vivo by short-circuit current measurements on colon mucosae and in vivo by NPD, whereas residual CFTR activity was observed in F508del rats. Exposure of F508del CFTR nasal primary cultures to a combination of VX-809 and VX-770 improved CFTR-mediated Cl- transport. CONCLUSIONS: The F508del rats reproduce the phenotypes observed in CFTR KO animals and represent a novel resource to advance the development of CF therapeutics.

14.
Nat Med ; 24(11): 1732-1742, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297908

RESUMO

Available corrector drugs are unable to effectively rescue the folding defects of CFTR-ΔF508 (or CFTR-F508del), the most common disease-causing mutation of the cystic fibrosis transmembrane conductance regulator, a plasma membrane (PM) anion channel, and thus to substantially ameliorate clinical phenotypes of cystic fibrosis (CF). To overcome the corrector efficacy ceiling, here we show that compounds targeting distinct structural defects of CFTR can synergistically rescue mutant expression and function at the PM. High-throughput cell-based screens and mechanistic analysis identified three small-molecule series that target defects at nucleotide-binding domain (NBD1), NBD2 and their membrane-spanning domain (MSD) interfaces. Although individually these compounds marginally improve ΔF508-CFTR folding efficiency, function and stability, their combinations lead to ~50-100% of wild-type-level correction in immortalized and primary human airway epithelia and in mouse nasal epithelia. Likewise, corrector combinations were effective against rare missense mutations in various CFTR domains, probably acting via structural allostery, suggesting a mechanistic framework for their broad application.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Fibrose Cística/tratamento farmacológico , Dobramento de Proteína/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Regulação Alostérica/efeitos dos fármacos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Mucosa Nasal/citologia , Mucosa Nasal/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
15.
Pharmacol Res ; 107: 381-389, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27063943

RESUMO

This review focuses on multidrug resistance protein 4 (MRP4 or ABCC4) that has recently been shown to play a role in cAMP homeostasis, a key-pathway in vascular biology and in platelet functions. In vascular system, recent data provide evidence that inhibition of MRP4 prevents human coronary artery smooth muscle cell proliferation in vitro and in vivo, as well as human pulmonary artery smooth muscle cell proliferation in vitro and pulmonary hypertension in mice in vivo. In the heart, MRP4 silencing in adult rat ventricular myocytes results in an increase in intracellular cAMP levels leading to enhanced cardiomyocyte contractility. However, a prolonged inhibition of MRP4 can promote cardiac hypertrophy. In addition, secreted cAMP, through its metabolite adenosine, prevents adrenergically induced cardiac hypertrophy and fibrosis. Finally, MRP4 inhibition in platelets induces a moderate thrombopathy. The localization of MRP4 underlines the emerging concept of cAMP compartmentalization in platelets, which is a major regulatory mechanism in other cells. cAMP storage in platelet dense granules might limit the cAMP cytosolic concentration upon adenylate cyclase activation, a necessary step to induce platelet activation. In this review, we discuss the therapeutic potential of direct pharmacological inhibition of MRP4 in atherothrombotic disease, via its vasodilating and antiplatelet effects.


Assuntos
Doenças Cardiovasculares/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Plaquetas/metabolismo , Humanos
16.
Blood ; 126(15): 1823-30, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26316625

RESUMO

Molecules that reduce the level of cyclic adenosine 5'-monophosphate (cAMP) in the platelet cytosol, such as adenosine 5'-diphosphate (ADP) secreted from dense granules, trigger platelet activation. Therefore, any change in the distribution and/or availability of cyclic nucleotides or ADP may interfere with platelet reactivity. In this study, we evaluated the role of multidrug resistance protein 4 (MRP4, or ABCC4), a nucleotide transporter, in platelet functions in vivo and in vitro by investigating MRP4-deficient mice. MRP4 deletion resulted in a slight increase in platelet count but had no impact on platelet ultrastructure. In MRP4-deficient mice, the arterial occlusion was delayed and the tail bleeding time was prolonged. In a model of platelet depletion and transfusion mimicking a platelet-specific knockout, mice injected with MRP4(-/-) platelets also showed a significant increase in blood loss compared with mice injected with wild-type platelets. Defective thrombus formation and platelet activation were confirmed in vitro by studying platelet adhesion to collagen in flow conditions, integrin αIIbß3 activation, washed platelet secretion, and aggregation induced by low concentrations of proteinase-activated receptor 4-activating peptide, U46619, or ADP. We found no role of MRP4 in ADP dense-granule storage, but MRP4 redistributed cAMP from the cytosol to dense granules, as confirmed by increased vasodilator-stimulated phosphoprotein phosphorylation in MRP4-deficient platelets. These data suggest that MRP4 promotes platelet aggregation by modulating the cAMP-protein kinase A signaling pathway, suggesting that MRP4 might serve as a target for novel antiplatelet agents.


Assuntos
Plaquetas/patologia , AMP Cíclico/metabolismo , Homeostase/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Ativação Plaquetária , Trombose/patologia , Animais , Transporte Biológico , Plaquetas/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Agregação Plaquetária , Testes de Função Plaquetária , Transdução de Sinais , Trombose/metabolismo
17.
PLoS One ; 9(10): e110776, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329809

RESUMO

BACKGROUND: Neuro- and vasoprotective effects of poly(ADP-ribose)polymerase (PARP) inhibition have been largely documented in models of cerebral ischemia, particularly with the potent PARP inhibitor PJ34. Furthermore, after ischemic stroke, physicians are faced with incomplete tissue reperfusion and reocclusion, in which platelet activation/aggregation plays a key role. Data suggest that certain PARP inhibitors could act as antiplatelet agents. In that context, the present in vitro study investigated on human blood the potential antiplatelet effect of PJ34 and two structurally different PARP inhibitors, DPQ and INO-1001. METHODS AND RESULTS: ADP concentrations were chosen to induce a biphasic aggregation curve resulting from the successive activation of both its receptors P2Y(1) and P2Y(12). In these experimental conditions, PJ34 inhibited the second phase of aggregation; this effect was reduced by incremental ADP concentrations. In addition, in line with a P2Y(12) pathway inhibitory effect, PJ34 inhibited the dephosphorylation of the vasodilator stimulated phosphoprotein (VASP) in a concentration-dependent manner. Besides, PJ34 had no effect on platelet aggregation induced by collagen or PAR1 activating peptide, used at concentrations inducing a strong activation independent on secreted ADP. By contrast, DPQ and INO-1001 were devoid of any effect whatever the platelet agonist used. CONCLUSIONS: We showed that, in addition to its already demonstrated beneficial effects in in vivo models of cerebral ischemia, the potent PARP inhibitor PJ34 exerts in vitro an antiplatelet effect. Moreover, this is the first study to report that PJ34 could act via a competitive P2Y(12) antagonism. Thus, this antiplatelet effect could improve post-stroke reperfusion and/or prevent reocclusion, which reinforces the interest of this drug for stroke treatment.


Assuntos
Plaquetas/metabolismo , Fenantrenos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases , Receptores Purinérgicos P2Y12/metabolismo , Difosfato de Adenosina/metabolismo , Feminino , Humanos , Masculino , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA